Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News

2008 West
DIAMOND SPONSOR:
Data Direct
SOA, WOA and Cloud Computing: The New Frontier for Data Services
PLATINUM SPONSORS:
Red Hat
The Opening of Virtualization
GOLD SPONSORS:
Appsense
User Environment Management – The Third Layer of the Desktop
Cordys
Cloud Computing for Business Agility
EMC
CMIS: A Multi-Vendor Proposal for a Service-Based Content Management Interoperability Standard
Freedom OSS
Practical SOA” Max Yankelevich
Intel
Architecting an Enterprise Service Router (ESR) – A Cost-Effective Way to Scale SOA Across the Enterprise
Sensedia
Return on Assests: Bringing Visibility to your SOA Strategy
Symantec
Managing Hybrid Endpoint Environments
VMWare
Game-Changing Technology for Enterprise Clouds and Applications
Click For 2008 West
Event Webcasts

2008 West
PLATINUM SPONSORS:
Appcelerator
Get ‘Rich’ Quick: Rapid Prototyping for RIA with ZERO Server Code
Keynote Systems
Designing for and Managing Performance in the New Frontier of Rich Internet Applications
GOLD SPONSORS:
ICEsoft
How Can AJAX Improve Homeland Security?
Isomorphic
Beyond Widgets: What a RIA Platform Should Offer
Oracle
REAs: Rich Enterprise Applications
Click For 2008 Event Webcasts
SYS-CON.TV
Top Links You Must Click On


Tips for Data Scientists | @CloudExpo #BigData #IoT #ML #AI #DataScience
I have come to realize that we also need to address the other side of the data science equation

I spend a lot of time helping organizations to “think like a data scientist.” My book “Big Data MBA: Driving Business Strategies with Data Science” has several chapters devoted to helping business leaders to embrace the power of data scientist thinking. My Big Data MBA class at the University of San Francisco School of Management focuses on teaching tomorrow’s business executives the power of analytics and data science to optimize key business processes, uncover new monetization opportunities and create a more compelling, engaging customer and channel engagement.

However in working with our data science teams, I have come to realize that we also need to address the other side of the data science equation; that we need to teach the data scientists in order for them to think like business executives. If the data science team cannot present the analytic results in a way that is relevant and meaningful to the business (so that it is clear what actions the business leaders need to take), then why bother.

In order to engagement more effectively with the business users, here are a couple of key points that the data science team needs to understand as they conduct their analytics:

#1: Tie the analytic results back to the organization’s key business initiatives, and more specifically, the organization’s key business decisions that drive them.
The data science team needs to understand thoroughly the key decisions that the business users are trying to make. Then, the data science team can present where and how the analytic results can help the business users make better decisions.

As part of ensuring that the analytic results are relevant and meaningful to the business, it is also critical to tie the analytic results back to the organization’s key financial or business drivers. Figure 1 shows an example of linking the analytics to the organization’s key financial and business drivers around the following business decision:

Which customers should receive which promotional offers?

Figure 1: Sample of Key Financial And Business Drivers

The Harvey Balls in Figure 1 show the relative impact that the promotional offer analytics would have on 6 key financial and business drivers in support of the customer targeting business decision.

Tying the analytic results back to organization’s financial or business drivers is key to ensuring that the data science work is relevant and meaningful to the business.

#2: Presentation of the analytic results is critical.
Don’t make the business users wade through the analytic output to try to figure out what’s important. Instead, make sure that the most meaningful analytic results stand out loud and clear to the business users. If the data supports it, make it stupidly clear where they should focus their attention and efforts.

For example, Figure 2 shows some sample analytic output that the data science team created around the business initiative of improving ground transportation effectiveness at a large location (e.g., shopping mall, port, arena) during a large event.

Figure 2: Raw Analytic Results

The business users had to look very hard at this slide to see what the slide was telling them about the business, and specifically what to do. That’s not what the business users want, and that is not how we ensure that our data science work is meaningful and actionable.

Instead, let’s apply some basic concepts to surface the meaningful and actionable insights. In Figure 3, we’ve developed some simple extensions to ensure that the meaningful and actionable insights come to the surface.

Figure 3: Presenting Actionable Insights

Instead of expecting the business users to wade through the analytics to determine what to do, Figure 3 highlights the key analytic insights or business “takeaways” (sometimes called “aha’s”) in the blue ribbon. Then the rest of the slide can illustrate how the analytics support the conclusions and insights. In particular, we have:

  • Highlighted the key actionable takeaways in the blue ribbon at the bottom of the analysis
  • We’ve removed extraneous bullet points, words and graphics that are not relevant to the key analytic takeaways.
  • We have highlighted the specific areas of the analysis that most loudly support our key takeaways.

Sometimes less really is more!

And if you really want to drive home your analytic points, get a marketing expert (thanks Phil Dussault) to present the analytic insights into a way that is engaging and exciting, while still being informative (see Figure 4).

Figure 4: Marketing Presentation of Analytic Results

Now that’s way cool!

Summary: “Thinking Like a Business Executive”
Data scientists can increase their value to the organization when they start to think like a business executive; to focus on how their business audience is going to consume the results of the analytics. The effectiveness of your data science work can be dramatically increased by:

  • Tying the analytic results back to the organization’s key decisions and the organization’s key financial and business drivers.
  • Effectively and clearly presenting the analytic results, insights and recommendations in a way that is engaging, informative and actionable to the business users.

When the data scientist has accomplished those objectives, then they’re well on their way to making themselves indispensable to the business and crossing the chasm to “thinking like a business executive.”

To hear a bit more about this “thinking like a business executive” approach, catch my “Respect the Data” presentation at the EMC Global Services booth at EMC World on Wednesday, May 4th at noon.

The post Tips for Data Scientists: Think Like a Business Executive appeared first on InFocus.

About William Schmarzo
Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Enterprise Open Source Magazine Latest Stories . . .
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one lo...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, will provide an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSy...
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbrai...
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are need...
It is ironic, but perhaps not unexpected, that many organizations who want the benefits of using an Agile approach to deliver software use a waterfall approach to adopting Agile practices: they form plans, they set milestones, and they measure progress by how many teams they have engag...
For better or worse, DevOps has gone mainstream. All doubt was removed when IBM and HP threw up their respective DevOps microsites. Where are we on the hype cycle? It's hard to say for sure but there's a feeling we're heading for the "Peak of Inflated Expectations." What does this mean...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021




SYS-CON Featured Whitepapers
Most Read This Week
ADS BY GOOGLE